
A Proposal for a Formal Definition of the Design Concept

Paul Ralph1 and Yair Wand1

1Sauder School of Business
University of British Columbia

Canada
{paulralph@gmail.com, yair.wand@ubc.ca}

Abstract: A clear and unambiguous definition of the design concept would be use-
ful for developing a cumulative tradition for research on design. In this article we
suggest a formal definition of the concept design and propose a conceptual model
linking concepts related to design projects. The definition of design incorporates
seven elements: agent, object, environment, goals, primitives, requirements and con-
straints. The design project conceptual model is based on the view that projects are
temporal trajectories of work systems that include human agents who work to design
systems for stakeholders, and use resources and tools to accomplish this task. We
demonstrate how these two conceptualizations can be useful by showing that 1) the
definition of design can be used to classify design knowledge and 2) the conceptual
model can be used to classify design approaches.

Keywords: design, information systems design, software design project, require-
ments, goals, science of design

1 Introduction

There have been several calls for addressing design as an object of research. Freeman and
Hart call for a comprehensive, systematic research effort in the science of design: “We
need an intellectually rigorous, formalized, and teachable body of knowledge about the
principles underlying software-intensive systems and the processes used to create them,”
[1, p.20]. Simon [2] calls for development of a “theory of design” and gives some sugges-
tions as to its contents. Yet, surprisingly, it seems no generally-accepted and precise defi-
nition of design as a concept is available.1

1 As an anecdotal note – we have asked colleagues in several conferences to suggest a definition of

design (in the software and IS context) and often the responses indicated IS academics did not
have a well-defined notion of the concept.

A clear understanding of what design means is important from three perspectives. From
an instructional perspective, it seems obvious that any designer’s education ought to in-
clude providing a clear notion of what design is. Furthermore, better understanding the
meaning of design will inform what knowledge such education could include.

From a research perspective, in any theoretical or empirical work in which design is a
construct, a clear definition will help ensure construct validity. Furthermore, a clear un-
derstanding of the meaning of design will facilitate developing measures of design-related
constructs, such as design project success. Moreover, building a cumulative tradition of
design research can benefit from a well-accepted definition of design, the alternative be-
ing different theories defining design differently, or not at all.

From a (software design) practitioner’s perspective, a clear definition of design can
help organize, share and reuse design knowledge. Such sharing can enhance software pro-
ject success and software development productivity. Furthermore, understanding the ele-
ments of design would be useful in determining the issues and information relevant to the
process of design and in planning this process.

Given the potential value of a clear definition of design, our objective here is to suggest
such a definition. We first seek to answer the question: what are the important elements of
design as a phenomenon? We then seek to situate design in a network of related concepts.

 We begin our discussion by making a distinction between the science of design and the
design science research paradigm (as elucidated by [3]). In the language of March and
Smith, design science research “builds and evaluates constructs, models, methods and in-
stantiations” with “design intent” [4, p.256]. In contrast, Freeman and Hart [1] call on the
community to theorize and justify theories about design – what March and Smith call
“natural science intent.”. Design science is a research paradigm, like experimentalism.
Science of design is a field of inquiry, like psychology. Here we primarily seek to address
issues related to the science of design.

The paper is organized as follows. First, we synthesize a definition of design by apply-
ing concepts and suggestions in existing literature (§2). We then evaluate the proposed
definition in Section 3. Section 4 situates our view of design in a conceptual model of
software design projects. In Section 5, we demonstrate how the proposed definition and
conceptual model of design can be applied to indexing design knowledge for reuse and
classifying design approaches, respectively. Finally, we discuss the implications of our
definition of design for current themes in software design and requirements research (§6).

2 Proposing a Formal Definition of Design

2.1 Design in the Literature

We have conducted a review of existing definitions of “design” in the literature. A list of
definitions we examined is provided in the Appendix (Table 9). We analyzed the defini-

tions in three ways. First, we identified the concepts that were common to several defini-
tions (Table 1). We then analyzed each definition and found that each had serious errors
(discussed below). We found that all definitions included at least one type of error. The
detailed analysis is provided also in Table 9 (Appendix). Finally, we identified four main
areas of disagreement among the definitions (discussed below).

Table 1. Frequency of Common Concepts in Analyzed Definitions

Concept Frequency
Design as a process 11
Design as creation 11
Design as planning 7
Design as a physical activity (or as including implementation) 7
System (as the object of the design) 7
Design as being deliberate, or having a purpose, goal or objective 7
Design as an activity, or a collection of activities 7
Design as occurring in an environment (or domain/situation/context) 7
Artifact, as the object of the design 5
Needs or requirements 5
Design as a human phenomenon 5
Design as organizing 4
Parts, components or elements 4
Constraints or limitations 3
Process (as the object of design) 2
Design as creative 2
Optimizing 2
Design as a mental activity 2
Resources 2

Some of these areas of agreement appear problematic. First, some definitions confuse
design with good design, adding desirability criteria to the definition, as evidenced by
words like “optimally,” [5] and “optimizing” [6]. Designs may be suboptimal, but we still
call them designs. Second, organizing does not necessarily constitute design, for example,
when someone returns books to their proper shelves in a library, one is organizing the
books into a pre-designed arrangement rather than actively performing a design task.
Third, four definitions state or imply that design is strictly a human phenomenon. How-
ever, machines can also design objects (e.g. the design of processors using genetic algo-
rithms [7]).2 Fourth, while many designers are surely creative, not all design need involve
creativity. For example, design might involve relatively minor modifications to a previ-
ously created design.

Finally, we identified four areas of disagreement. First, different objects of design
arise: system, artifact and process. Second, disagreement exists concerning the scope of

2 Some research indicates that animals can also design objects [9] [10].

design: where or when a design begins and ends. Third, some definitions indicate that de-
sign is a physical activity, others a mental activity. Fourth, some disagreement concerns
the outcome of design: is it a plan, an artifact, or a solution?

2.2 Suggesting a Definition of Design

In this section, we develop our proposed definition of design. First, [8] differentiates be-
tween the subjects and objects of design. The subject of the design is the (often human)
agent that manifests the design. The design object is the thing being designed. Design
outcomes such as an artifact, a system or a process that appear in some existing definitions
are encompassed here by the more general term, design object.3

Some definitions mention parts, components or elements of which the design object is,
or is to be, composed. Obviously, all artificial physical things are made from other things.
We term the lowest level of components primitives. Similarly, but perhaps less obviously,
if we assume that atomic conceptual things, such as single thoughts or ideas, are not de-
signed (but are discovered or just are available), then all conceptual things that are de-
signed are made from other conceptual things. Therefore, all design involves primitives,
which are, or can be, assembled or transformed to create a design object.4 March and
Smith note that “Technology includes...materials, and sources of power” [4, p.252]. Mate-
rials and sources of power would be included in the set of primitives.

The outcome of a design effort is not necessarily the design object itself, but may be a
plan for its construction, consistent with the definitions that characterize design as plan-
ning rather than building. The common factor here is that the agent specifies properties of
the design object: sometimes as a symbolic representation, as in an architectural blueprint,
sometimes as a mental representation, as in a picture in a painter’s mind, and sometimes
as the artifact itself, as in a hand-carved boomerang. We call the specified properties of
the design object a specification. More specifically, a specification is a detailed descrip-
tion of a design object’s structural properties, namely, which primitives are assembled or
modified and, if more than one primitive is used, how they are linked. 5 The specification
may be purely mental, provided in a symbolic representation, presented as a physical
model, or even manifested as the object itself.

3 Note: often the object is called an artifact, when designed by humans. The more general term ob-

ject allows (in principle) for non-human agents such as animals and computers.
4 What the set of available primitives is can be a relative issue. A designer might be given a set of

components, or component types, where each might be in turn composed from lower level com-
ponents. We consider primitives the set of component-types available to the designer, independent
of whether they are natural, or the outcome of previous design. Furthermore, even if the compo-
nents are not yet available, a designer might proceed assuming they will be available. The as-
sumptions made about these components will become requirements for their design.

5 This notion of specification agrees with that of [14], that design is the activity that produces “a de-
scription of the software’s internal structure,” (p.1-3)

Practically speaking, a specifications document might include desired behaviors as well
as structural properties. From the perspective of this paper, these desired behaviors are re-
quirements – they are not strictly part of the specifications. The object’s behavior emerges
from the behavior of the individual components and their interactions. (By behavior we
mean the way the object responds to a given set of stimuli from its environment, including
agents who interact with the object.)

Churchman points out that “Design belongs to the category of behavior called teleo-
logical, i.e., “goal seeking” behavior,” [11, p. 5]. Many of the definitions we surveyed also
included concepts such as “goal,” “purpose” or “objective.” While the goal may not be
explicit or well defined, design is always intentional, never accidental. For example, a so-
cial networking web application can be designed without having an explicit goal, based on
the vague idea that it would be useful and fun to have an online space where people could
connect. We would still say the web application was designed. On the other hand, acci-
dental or unintentional discoveries are not designed. Thus, goals are inherent to design in-
sofar as a designer must have intentionality. However, this should not be interpreted as a
requirement that a design goal is or can be formally or explicitly articulated.

Many definitions characterize the design process as occurring within an environment,
domain, situation or context. Design involves two different environments: the environment
of the design object, and the environment of the design agent. As pointed out by Alexan-
der, “every design problem begins with an effort to achieve fitness between two entities:
the form in question and its context,” [12, p.15]. Clearly, the design process or activity
also occurs within some environment, even if that environment is difficult to characterize.
March and Smith mention the “organizational setting” [3, p. 252] and Hevner et al. refer
to “organizational context” [4, p. 77]. For instance, the software created by a developer is
intended to operate in a different environment than the developer operates in. The quali-
fier “organizational” is not always valid for the environment of the artifact because the
environment does not have to be an organization (e.g. the environment of a pacemaker is a
human body).

Many definitions also mention needs or requirements and limitations or constraints.
The issue of requirements needs clarification. If we interpret requirements strictly as a
formal requirements document or as a set of mathematically expressible functions, as in
Gero 1990 [13], the system is to perform, then requirements are not absolutely necessary.
The primitive hunter who fashions a spear from a branch specified the spear’s properties
by creating it – without an explicit reference to formal requirements (let alone mathemati-
cally definable functions). However, in the sense that every designer expects or desires the
design object to possess certain properties or exhibit certain behaviors, requirements are
inherent to design. Requirements are a major construct in requirements engineering and
software design [15] [16].

Similarly, all design must involve constraints. Even if the design agent had infinite
time and resources, physical design is still constrained by the laws of physics, virtual de-
sign by the speed and memory of the computational environment, and conceptual design
by the mental faculties of the design agent. Constraints are a major construct in engineer-
ing design [2], [17]. However, like requirements, constraints may not be explicit.

The above analysis leads to the following suggestion for the definition of design (mod-
eled in Figure 1). Table 2 further describes each concept in the definition.

Design

(noun) a specification of an object, manifested by an agent, intended to
accomplish goals, in a particular environment, using a set of primitive
components, satisfying a set of requirements, subject to constraints;

(verb, transitive) to create a design, in an environment (where the de-
signer operates)

Fig. 1. Conceptual Model of Design (as a noun)

Considering design as a process (depicted in Figure 2), the outcome is the specification
of the design object. The goals, environment, primitives, requirements and constraints are,
in principle, the inputs to the design process; however, often knowledge of these may
emerge or change during the process. Nevertheless, the design process must begin with
some notion of the object’s intended environment, the type of object to design and inten-
tionality – by this we simply mean that design cannot be accidental. Finally, if the type of
design object changes significantly (e.g. from a software system to a policy manual), the
existing design effort is no longer meaningful and a new design effort begins. The possi-
bility of changing information is related to the possibility that the design process involves
exploration. It also implies that the design may evolve as more information is acquired.

Table 2. Definitions of Design Concepts

Concept Meaning
Design
Specification

A specification is a detailed description of an object in terms of its structure, e.g., the
primitives used and their connections.

Design
Object

The design object is the entity (or class of entities) being designed. Note: this entity
is not necessarily a physical object.

Design Agent The design agent is the entity or group of entities that specifies the structural proper-
ties of the design object.

Environment The object environment is the context or scenario in which the object is intended to
exist or operate (used for the noun form). The agent environment is the context or
scenario in which the design agent creates the design (used for the verb form).

Goals Goals describe the desired impacts of design object on its environment. Goals are
optative (i.e. indicating a wish) statements that may exist at varying levels of ab-
straction [18].

Primitives Primitives are the set of elements from which the design object may be composed
(usually defined in terms of types of components assumed to be available).

Requirements A requirement is a structural or behavioral property that a design object must pos-
sess. A structural property is a quality the object must posses regardless of environ-
mental conditions or stimuli. A behavioral requirement is a required response to a
given set of environmental conditions or stimuli. This response defines the changes
that might happen in the object or the impact of these changes on its environment.

Constraints A constraint is a structural or behavioral restriction on the design object, where
“structural” and “behavioral” have the same meaning as for requirements.

Fig. 2. Context-level Conceptual Model of Design (as a Verb)

2.3 What Can Be Designed and Examples of Design Elements

“What can be designed?” is a difficult ontological question, one we are not sure we can
answer completely. However, we have identified six classes of design objects:
x physical artifacts, both simple, such as boomerangs (single-component), and compos-

ite, such as houses (made of many types of components)
x processes, such as business workflows
x symbolic systems, such as programming languages
x symbolic scripts, such as essays, graphic models, and software
x laws, rules and policies, such as a criminal code
x human activity systems, such as software design projects, committees and operas

Clearly, the nature of a specification depends on the class of design object since the
structure and components of, for example, a law would be very different from those of a
rocking chair. For simple artifacts, such as a one-piece racket, the specification would in-
clude structural properties such as shape, size, weight and material. For a composite
physical artifact, such as a desk, the specification would include the primitive components
and how they are connected. Since a process is ‘a set of partially ordered activities aimed
at reaching a goal’ [19], a specification of a process may identify the activities and their
order (although other approaches are possible – e.g. using Petri Nets or states and events
[20], [21]). For a symbolic system, the specification may include syntax, denotational se-
mantics and (for a spoken language) pragmatics. A symbolic script can be specified by
symbols and their arrangement. A policy or law can be specified in some (possibly for-
mal) language. The specification of a human activity system might include agents, roles,
tasks, artifacts, etc. and their relationships.

Furthermore, all elements from the definition of design may vary across object types.
Table 3 provides examples of each design element for each class of design object.

2.4 Scope of Design

According to the perspective on design expressed in this paper, design (as a verb) is the
act of specifying the structural properties of an object, either in a plan or in the object it-
self. Because design is an activity, rather than a phase of some process, it may not have a
discernible endpoint. Rather, it begins when the design agent begins specifying the prop-
erties of the object, and stops when the agent stops. Design may begin again if an agent
(perhaps a user) changes structural properties of the specification or design object at a
later time. This defines the scope of the design activity.

Our definition does not specify the process by which design occurs. Thus, how one in-
terprets this scope of activities in the design process depends on the situation. If a designer
encounters a problem and immediately begins forming ideas about a design object to
solve the problem, design has begun with problem identification. If requirements are gath-
ered in reaction to the design activity, design includes requirements gathering. In contrast,
if a designer is given a full set of requirements upfront, or gathers requirements before

Table 3. Examples of Design Elements

Object Type Process Symbolic system Law/policy Human activity system Physical artifact Symbolic Script

Object loan approval a special purpose
programming lan-
guage

criminal code a university course office building a software system

Agent loan officer team that creates the
language

legal experts and
lawmakers

instructor architect programmer

Goals accurately estimate
risk level of loan

provide a means of
expressing software
instructions

provide a legal
framework for deal-
ing with crimes

facilitate learning and
development of stu-
dents in a given area

provide office
space for a busi-
ness

support management
of customer informa-
tion

Object
Environment

bank administrative
system

computing environ-
ment on which code
will execute

national legal and
constitutional sys-
tem

university (with all re-
sources available)

business district
of a given city

personal computers
and specific operating
systems

Requirements provide a decision
with justification; gen-
erate audit trail for de-
cision process

be easily readable,
minimize coder ef-
fort, fit certain ap-
plications

define crimes and
punishments clearly;
be unambiguous

learning objectives include open
floor plan of-
fices, be energy
efficient

maintain customer in-
formation, identify
customers with certain
characteristics

Primitives various actions that
need to be taken, e.g.,
assessing the value of
a collateral

the c programming
language instruc-
tions

English words as
used in legal docu-
ments

various common teach-
ing actions (presenta-
tions, laboratory ses-
sions, tests)

building materi-
als, interior
decoration mate-
rials

the instructions in the
symbolic system (pro-
gramming language)

Constraints bank approval rules
and risk policies (e.g.
debt-service ratio al-
lowed)

cannot violate some
programming lan-
guages related stan-
dards

must not violate the
country’s constitu-
tion and interna-
tional laws

prior knowledge stu-
dents have, number of
class and laboratory
hours available

comply with
building code,
cost less than a
given budget

must be able to run on
a given hardware con-
figuration with a
maximum given delay

conceptualizing a design object, requirements gathering is not part of design. Simi-
larly, if the construction agent refines the specification (a possible occurrence in soft-
ware development), construction is part of design, but if the designer creates a com-
plete specification on paper that the construction agent follows deterministically,
construction is not part of design. Any activity, including testing and maintenance,
that involves modifying, or occurs within an effort to modify, the specification is part
of design. Therefore, design practice may not map cleanly or reliably into the phases
of a particular process, such as the waterfall model [22] or software development life-
cycle [14].

This distinction has particular bearing for software design, where a significant de-
bate over the scope of design exists. On the narrow-scope side, Bourque and Dupuis
[14], for example, define design as:

the software engineering life cycle activity in which software requirements
are analyzed in order to produce a description of the software’s internal
structure that will serve as the basis for its construction, [p. 1-3].

On the broad-scope side, Freeman and Hart [1], for example, argue that:
Design encompasses all the activities involved in conceptualizing, framing,
implementing, commissioning, and ultimately modifying complex systems—
not just the activity following requirements specification and before pro-
gramming, as it might be translated from a stylized software engineering
process, [p. 20].

One way of interpreting this debate is as follows. Proponents of a narrow scope of
the design process posit that all inputs to design (goals, environment, primitives, re-
quirements and constraints) are fully defined before any property of the object has
been decided. Furthermore, the design phase results in a full specification of all rele-
vant object properties before coding begins. In contrast, proponents of a broad scope
of design recognize that properties of the object are often defined during requirements
elicitation, coding or even testing. Moreover, design may begin without complete
knowledge of all information needed and the process may include obtaining addi-
tional information. Which side of this debate better reflects software design practice is
an empirical question; the proposed definition of design is compatible with either.

3 Evaluating the Proposed Definition of Design

In this section we evaluate our definition of design, based on the degree to which it:
x Satisfies a set of four definition evaluation criteria (Appendix, Table 8)
x Incorporates areas of agreement in existing definitions (Tables 1 and 4)
x Resolves disagreements in existing definitions (§2.1)
x Appears usable and useful

3.1 Definition Evaluation Criteria

Coverage. Whether a definition covers all phenomena in the domain to which it ap-
plies, and nothing else, is an empirical question akin to a universal hypothesis. There-

fore, the definition can be disproven by a counter example, but never proven. Thus,
we evaluated the definition against a diverse set of examples (e.g. Table 3) and found
that we could describe the examples using the proposed seven elements of design.
Meaningfulness. A definition is meaningful when all its terms have clear meanings.
We have explicitly defined all terms having imprecise everyday meanings in Table 2.
Unambiguousness. A definition is unambiguous when all its terms have unique
meanings. All terms not explicitly defined are intended in the everyday sense, that is,
as defined in the dictionary. Where terms have multiple definitions, the intention
should be clear from the context.
Ease of Use. The proposed definition is presented in natural language, and is seg-
mented into clearly distinct elements, to ensure clarity for both practitioners and re-
searchers. It is consistent with everyday notions of design and differentiates design
from related terms such as invention, decision-making, and implementation. Table 3
provides examples of the elements of design to facilitate use of the definition.

3.2 Areas of Agreement

The relationship of each area of agreement to the proposed definition is analyzed in
Table 4. Aspects of design mentioned in the literature that we demonstrated should
not be included are marked “discounted.” As can be seen in the table, all areas are ex-
plicitly or implicitly accommodated.

Table 4. Incorporation of Areas of Agreement

Concept Consistency with Proposed Definition
Design as a process implicit in the verb form of the proposed definition
Design as creation explicit in the verb form of the proposed definition
Design as planning encapsulated by the design ‘specification’ (however,

planning may be lightweight)
System (as the object of the design) included in the more abstract term, design object
Design as being deliberate, or having
a purpose, goal or objective

explicitly included as goals

Design as an activity, or a collection
of activities

implicit in the verb form of the proposed definition

Design as occurring in an environ-
ment (or domain/situation/context)

explicitly included as environment

Artifact, as the object of the design included in the more abstract term, design object
Needs or requirements explicitly included as requirements
Design as organizing discounted
Parts, components or elements explicitly included as primitives
Design as a human phenomenon discounted
Constraints or limitations explicitly included as constraints
Process (as the object of design) included in the more abstract term, design object�and

listed as a class of design object
Design as creative discounted
Optimizing discounted
Resources implicit in primitives and the verb form (since creating

something always uses resources)

3.3 Areas of Disagreement

The proposed definition addresses each of the four areas of disagreement among ex-
isting definitions (see §2.1). First, different objects of design arise: system, artifact
and process. We addressed this by using the more general term, design object and
suggesting major categories of such objects. Second, disagreement exists concerning
the scope of design: where or when a design begins and ends (resolved in §2.4).
Third, disagreement exists as to whether design is a physical or mental activity.
Clearly, design (for humans) is a mental activity, albeit one that may be supported by
physical activities (such as drawing diagrams or constructing physical models). The
fourth disagreement, concerning what can be designed, was addressed in §2.3.

3.4 Usefulness and Usability

We suggest that the proposed definition of the design concept can inform practice in
several ways. First, the elements of the definition (excluding agent) suggest a frame-
work for evaluating designs: 1) specification – is it complete? 2) object – did we build
the right thing? 3) goals – are they achieved? 4) environment – can the artifact exist
and operate in the specified environment? 5) primitives – have we assumed any that
are not available to the implementers? 6) requirements – are they met, i.e., does the
object possess the required properties? 7) constraints – are they satisfied? Second, the
breakdown of design into elements can provide a checklist for practitioners. Each
element should be explicitly identified for a design task to be fully explicated. For ex-
ample, a project team may not be able to provide consistent and accurate estimates of
design project costs if crucial elements are unknown. Third, a clear understanding of
design can prevent confusion between design and implementation activities. Such
confusion may lead to poor decisions and evaluation practices. For example, a man-
ager who needs to hire team members for a project may view programmers only as
implementers (not understanding the design involved in programming) and thus hire
employees with the wrong sorts of skills. Fourth, the elements of design can also be
used to specify and index instances of design knowledge for reuse (discussed next).

4 A Conceptual Model for the Design Project

We now propose a conceptual model (a set of concepts and their relationships) for de-
sign-related phenomena.6 Here, we limit our discussion to design within the informa-
tion systems field. Specifically, we view design as a human activity that occurs within
a complex entity, which can be thought of as a human activity system. Alter defines a
work system as “a system in which human participants and/or machines perform work
using information, technology, and other resources to produce products and/or ser-
vices for internal or external customers,” [23, p. 11]. Expanding on this concept, we

6 We note that to define a conceptual model of a domain, one needs to define the concepts used

to reason about the domain (and their relationships). Such a conceptual structure is an ontol-
ogy. Hence, we view our proposal as a conceptual model and as an ontology of concepts.

suggest that a project is a temporal trajectory of a work system toward one or more
goals; the project ceases to exist when the goals are met or abandoned. Following this,
we define a design project as a project having the creation of a design as one of its
goals. This relationship is shown in Figure 3.

Fig. 3. Design Project Generalization Relationship. Shaded arrow indicates relationship; un-
shaded arrow indicates generalization.

The design project is the central concept of our conceptual model (depicted in Figure
4). Each concept is defined and each relationship is discussed in the following section
(except the concepts from the definition of design, defined in Table 2).

Fig. 4. Design Project Conceptual Model. Shaded arrows indicate reading direction, unshaded
arrows indicate generalization, shaded diamonds indicate composition; all relationships many-

to-many unless otherwise indicated.

Notes. 1) The relationships between the definition-of-design elements (e.g. con-
straints) and the other design project conceptual model elements (e.g. knowledge) are
omitted to maintain readability. 2) The relationships between design approach and

elements other than design project are unclear at this time and left for future work. 3)
All shown concepts are implicitly part of the work system within which the design
project takes place. 4) Creates is shown in this diagram as a relationship between de-
sign team and design, whereas Fig. 1 depicted creates as a relationship between agent
and specification. In a design project, the design team is the agent. Furthermore, since
the design project conceptual model includes the design concept, the model shows
that the design team creates the design, which is a specification.

4.1 Discussion of Concepts

Alter identifies nine elements of a work system [23]:
x Work practices
x Participants
x Information
x Technologies
x Products and services the work system produces
x Customers for those products and services
x Environment – surrounds the work system
x Infrastructure shared with other work systems
x Strategies used by the work system and the organization

Since a project is a trajectory of a work system, and a design project is particular
type of project a design project should both share all of the work system elements and
have properties not necessarily shared by other projects and work systems. Here, we
discuss each element of the conceptual model, the relationships among elements, and
the correspondence between elements of the conceptual model and elements of a work
system. The conceptual model includes all the work system elements and, in addition,
several elements specific to design projects, which we point out.
Activities. Activities include the specific behaviors engaged in by participants in the
design project. These may include interviewing stakeholders, modeling requirements,
evaluating proposed design, etc. Activities exist at differing levels of granularity; for
instance, modeling can be further divided into sub-activities such as writing scenarios,
drawing entity relationship diagrams and then comparing the data models with the
scenarios.
Participants and Stakeholders. Participants are the “people who perform the work,”
[23, p. 13]. Since individual participants vary among projects, we use the generic la-
bel, stakeholder. A stakeholder is a person or entity with an interest in the outcome of
the project [24]. Design projects may have different types of stakeholders – we spe-
cifically include the designer type for obvious reasons.
Designer. A designer is an agent that uses his or her skills to directly contribute to the
creation of a design. This concept is specific to design projects.
Knowledge. Stakeholders may have and use knowledge during their involvement
with the design project. In our interpretation, knowledge includes the kinds of infor-
mation and knowhow used by stakeholders in a design project. To define knowledge,
we extend the definition suggested by [25]: given the states of the agent and the envi-
ronment, knowledge is the information that enables an agent to select actions (from
those available to the agent) so as to change the current state of affairs to a goal state.

The design project can create knowledge as it proceeds – a tenant of the design sci-
ence research paradigm [3].
Skill. A skill is a combination of mental and/or physical qualities that enable an agent
to perform a specific action. Skills differ from knowledge as knowledge enables one
to select actions.
Technologies. Technologies are artificial, possibly intangible, tools and machines.
Technologies can be used by the design team to create the design.
Design. The design, defined above, is the product that the design project aims to pro-
duce. This concept is specific to design projects.
Environment and Infrastructure. Fig. 4 combines Alter’s environment and infra-
structure constructs because both represent aspects of the project that are outside its
scope [23]. [26] argues that, to properly model a system, the modeler must first model
the system it serves. This wider system served by a design project is its environment.
Alter argues: “the work system should be the smallest work system that has the prob-
lems or opportunities that are being analyzed,” [23, p. 22]. Following this, then, the
environment is the smallest coherent system served by the design project.

The environment construct is a potential source of confusion because Design Pro-
ject and Design both have environments. The design project’s environment is the
work system in which the project occurs; the design’s environment is the context in
which in the object is to operate.
Design Approach and Strategy. A design approach is a set of beliefs about how de-
sign (and related activities) should be done. Examples include The Unified Software
Development Process [27], and the Systems Development Lifecycle [14], [28], [29].
“Strategies consist of the guiding rationale and high-level choices within which a
work system, organization, or firm is designed and operates,” [23, p. 14]. As a design
approach contains rationale and is implemented as choices, it corresponds to Alter’s
strategy construct. A design project may explicitly instantiate a formal design ap-
proach by using some or all of its elements. If a broad scope of design is taken (§2.4),
a design approach can refer to the entire development process from problem identifi-
cation to implementation and maintenance.

We have adopted the more general term design “approach” instead of “process” or
“methodology” because “design processes” often contain much more than sequences
of activities and “methodology” is used both as a formal word for ‘method’ and as the
systematic study of methods. This concept is specific to design projects.
Design Team. All designers involved in a project comprise the design team. The de-
sign team engages in activities and uses technologies to create the design and other
(intermediate) artifacts. This concept is specific to design projects.
Artifacts. In this model, artifact is used in the broad, anthropological sense of any ob-
ject manufactured, used or modified by agents in the design project. Examples include
conceptual models, software development environments, whiteboards, and e-mails.
(This is not to be confused with an artifact that is the object of design.)
Metric. A metric is a way or standard of taking a measurement, where measurement
refers to a process of assigning symbols (often numbers) to an attribute of an object or
entity and also the symbols assigned (cf. [30], [31], [32]). In the case of a design pro-
ject, metrics are used for evaluating specifications, objects, the project, etc.
Design Worldview. A worldview or (more precisely) Weltanschauung is a way of
looking onto the world. It is sometimes used in social sciences to indicate a set of high

level beliefs through which an individual or group experiences and interprets the
world. As a precise definition of this concept is elusive, we suggest some possibilities
for classifying worldviews in the design context (Table 5). Worldviews are not mutu-
ally exclusive, i.e., some design projects may explicitly adopt one or more design
Weltanschauung. However, even without such an explicit view, every project partici-
pant brings a view of design to the project, and the combination of these views com-
prises the project’s collective Weltanschauung. This concept is not necessarily com-
mon to all work systems.

Table 5. Identified Design Weltanschauung

Weltanschauung Description Proponents / Ex-
amples

Problem Solving Design can be seen as an attempt to solve a known
problem, a view characterized by the beliefs that a
problem exists and is identifiable and that the success
of a design is related to how well it solves the problem.

 [2], [3], the de-
sign science and
engineering litera-
ture.

Problem Finding Design can be seen as an attempt to solve an unknown
problem, implying that understanding the problem is
part of the design process.

[33], the require-
ments engineering
literature

Epistemic Design can be seen as a learning process where actions
that can lead to improvements to the current situation
(in the eyes of stakeholders) are discovered.

[26]

Inspiration Design can be seen as a result of inspiration, i.e., in-
stead of beginning with a problem, design begins with
an inspiration of the form ‘wouldn’t it be great if....’

[34]

Growing Design can be seen as growing an object, progressively
improving its fit with its environment and purpose.

[4], [35]

4.2 Evaluation of the Conceptual Model of Design Projects

To evaluate the set of concepts underlying the proposed conceptual model, we use
evaluation techniques suggested for ontologies. Ontology evaluation can proceed in
several ways. The competency questions approach involves simultaneously demon-
strating usefulness and completeness by analytically proving that the ontology can an-
swer each competency question in some question set [36]. The ontology is then con-
sidered complete with respect to that question set. In contrast, [37] suggests two
dimensions of ontology quality: coverage and usefulness. Coverage can be demon-
strated by comparing an ontology to a reference corpus: terms in the corpus that do
not fit into the ontology indicate lack of coverage. Furthermore, “An important way of
evaluating the capabilities and practical usefulness of an ontology is considering what
practical problems it was applied to,” [37, p. 72].

Since the proposed “ontology” is not intended to answer particular questions,
evaluation with respect to coverage and usefulness seems preferable. Assessing the
conceptual model’s coverage is beyond the scope of this paper; however, a possible
approach is evident. By surveying a range of design approaches, e.g. The Rational
Unified Process, Agile Methods, The Waterfall Model, The Spiral Model, etc., a list
of design concepts can be generated and compared to the proposed conceptual model.

Coverage can be measured by the extent to which these revealed concepts match the
proposed concepts (usually as instances of the generic concepts suggested above).

We address usefulness in section (§5.2) by demonstrating how the conceptual
model can be applied in principle to the practical problem of classifying and contrast-
ing design approaches.

5 Potential Applications

In this section we discuss possible applications of the proposed definition of design
and of the design project conceptual model. First, we suggest the use of the elements
of the definition of design to classify and index design knowledge. Second, we dis-
cuss the use of the design project conceptual model for comparing and classifying ap-
proaches to software design.

Application 1: Design Knowledge Management System

The importance of reuse in software development has been widely recognized. [38]
states that software reuse “is the (only) realistic opportunity to bring about the gains in
productivity and quality that the software industry needs.” [39] suggests a number of
reuse types in software engineering, divided into two broad categories: code reuse and
knowledge reuse.

Code reuse includes different approaches to organize actual code and incorporate it
into software (e.g. libraries of modules, code fragments, or classes) and the use of off-
the-shelf software. Code repositories can be considered design knowledge bases.
Though some authors, e.g. [35], argue that the best mechanism to communicate de-
sign is the code itself, sharing design is not the same as sharing design knowledge.
Even well-commented code does not necessarily communicate design knowledge
such as the rationale for structural decisions (e.g., why information was stored in a
certain structure).

Knowledge reuse refers to approaches to organizing and applying knowledge about
software solutions, not to organizing the solutions themselves. It includes algorithms,
design patterns and analysis patterns.7 Perhaps the most successful attempt to codify
software design knowledge is the design patterns approach. A design pattern is an ab-
stract solution to a commonly occurring problem. The design pattern concept was
originally proposed in the field of architecture and became popular in software engi-
neering following the work by [40] [41].8

Despite the apparent benefits of sharing design knowledge, it has been observed
that it is difficult to accomplish. “Experts and veterans continue to shun reuse from
public knowledge spaces” and that when the needed artifact “was not found in their

7 Other approaches to organizing software development knowledge include architectural pat-
terns, anti-patterns, best practices and development methods. Standards and templates (e.g. for
documentation) can also be considered organized knowledge.
8 The Portland Pattern Repository (http://c2.com/ppr/) is an example of a design pattern reposi-
tory that could be called a design knowledge base.

private space” “it was also less costly for them to recode the desired artifact than to
conduct a global search for one,” [42, p. 98]. This indicates the difficulties of locating
needed design knowledge (or other software artifacts). One way to facilitate searching
is to classify and index design knowledge on meaningful dimensions. Next, we dem-
onstrate by example how the proposed definition of design can provide such dimen-
sions and thus help index instances of design knowledge.

An Example. In programming, an iterator object traverses a collection of elements,
regardless of how the collection is implemented. Iterators are especially useful when
the programmer wants to perform an operation on each element of a collection that
has no index. The iterator design pattern is a description of how best to implement an
iterator. Table 6 shows how the design knowledge represented by the iterator design
pattern might be indexed using the elements of the proposed definition of design.
Note that, in this application the goals, requirements, etc. are properties of the iterator,
not of the design pattern. The goal of the design pattern, for instance, is to explain
how to implement an iterator (and not how to traverse a collection).

Table 6. Example of Design Knowledge Indexing

Object Type symbolic script
Object iterator
Agent application programmer
Goals access the elements of a collection of objects
Environment object-oriented programming languages
Primitives primitives and classes available in object-oriented programming languages
Requirements have a means of traversing a collection, be implementable with respect to a

variety of collections, etc.
Constraints must not reveal how the objects in the collection are stored, etc.

By classifying design knowledge according to these dimensions, a designer can ask
questions of the form ‘are there any design patterns (object) for traversing a collection
(requirement) in an object-oriented language (environment)?’ We suggest that such
classification can help organize and share design knowledge and thus help improve
designers’ effectiveness and efficiency in locating and applying useful design knowl-
edge.

Application 2: Design Approach Classification Framework

Classifying design approaches is important for several reasons. First, practitioners
need guidance in selecting appropriate design approaches for their situations. Second,
such classification can facilitate comparative research on approaches. Third, it can
guide the study of the methods employed by experienced developers (which, in turn,
can inform research on software design and software processes).

At least two types of classifications of design approaches are possible. First, a clas-
sification can be based on the actual elements (e.g. steps, interim products) that com-
prise a design approach or process. This can be termed a “white-box” approach. Sec-
ond, a classification can be based on the environment that surrounds a design

approach. For example, specific objectives of the approach, the view of design it em-
beds, and the roles of stakeholders. This can be termed a “black-box” approach.

We suggest that the proposed design project conceptual model can be used to cre-
ate a black-box classification scheme for design approaches. To demonstrate, using
dimensions derived from the design project conceptual model, Table 8 classifies three
design approaches: the Soft Systems Methodology [26], Extreme Programming [36]
and the Rational Unified Process [16]. We chose these three because each is promi-
nent in the literature and represents a significantly different perspective.

6 Discussion and Implications for Software Design Research

6.1 Completeness, Design Agency and Software Architecture

For years, researchers have argued that informal specifications may suffer from in-
completeness [43]. Above, we defined a specification as a detailed description of an
object in terms of its structure. This allows a more precise characterization of incom-
pleteness. We suggest that a design specification is complete when the structural in-
formation that has been specified is sufficient for generating (in principle) an artifact
that meets the requirements.9

Based on the notion of completeness we have defined above, we can now identify
three forms of incompleteness. First, relevant components or connections may be
missing. For example, the specification of a bicycle may be missing the qualification
that the tires be attached to the rims. Second, a particular component or connection
may be insufficiently described. For example, it may not be clear from the specifica-
tions how the tires should be attach to the rims or which tire to use. (Please note, here
we are not distinguishing here between incompleteness and ambiguity.) Third, a com-
ponent may not be part of the set of primitives but can be designed based on existing
primitives or other components. The design will not be complete until specifications
exist for all such components.

Completeness is not an end state for a design specification. Future changes in the
set of primitives may render a previously complete specification incomplete. Fur-
thermore, many researchers now agree on the importance of “the fluidity, or contin-
ued evolution, of design artifacts,” [44, p. 36]. In situations where future conditions
are difficult or impossible to predict, one response is to focus on the evolvability and
adaptability of the design object [2], [45]. The characterization of design advanced
here provides important implications for design fluidity. First, specification complete-
ness does not imply constancy. A design specification can be evolved to respond to
changing conditions by its original creator, the design object’s users, or others,. Fur-
thermore, the elements of the proposed definition enumerate classes of possible
changing conditions in response to which the design object or specification may need

9 Since it is impossible to list all of the properties of any object, we limit our discussion to

“relevant” properties, i.e., a sufficient subset of properties to allow a “generating machine”
(e.g. a human being or a manufacturing robot) to deterministically assemble the object.

to evolve. For example, the specification may be modified in response to changes in the environment. Finally, the set of requirements may contain
stipulations for a design object’s evolvability by end-users or others.

Table 7. Example Classification of Design Approaches

Soft Systems Methodology (SSM) Extreme Programming Rational Unified Process (RUP)
Object human activity systems software software
Weltanschauung epistemic growing problem solving
Metrics situation dependent “measures of per-

formance;” the 5 E’s: efficacy, effi-
ciency, effectiveness, ethicality, elegance

advocated, but none provided;
differentiates internal and exter-
nal quality

defines metrics as part of the process; fundamental
quality measure: ‘does the system do what it is sup-
posed to?’

Nature of Specifi-
cation

action items, i.e., some action that can be
taken to improve the situation, in the eyes
of the stakeholders

source code UML models (use cases and diagrams); source code

Activities semi-structured interviews, analysis,
modeling, debate

coding, testing, listening, design-
ing (refactoring)

broadly: requirements gathering, analysis and design,
implementation, testing, deployment, configuration
and change management, project management (each
with sub activities)

Artifacts interview guides and transcripts, collec-
tions of notes, rich pictures

prototypes, test suites stakeholder requests, vision, business case, risk list,
deployment plan, analysis model, etc.

Users owner, actor, customer programmers/developers, clients RUP users take on one or more of six role categories:
analysts, developers, managers, testers, production
and support, and additional.

Stakeholders stakeholders is an explicit concept in
SSM

divided into “business” and “de-
velopment”

“stakeholder” is a “generic role” that refers to “any-
one affected by the outcome of the project” (p. 276)

Tools rich pictures, interview guides, debates
and group discussions

story cards, diagrams, an integra-
tion machine, several develop-
ment workstations

IBM Rational Suite

This raises questions of who exactly, in a typical software project, is the de-
sign agent? We have defined the design agent as the entity or group of entities
that specifies the structural properties of the design object. When users are in-
volved in design, whether a user is part of the design agent depends on the na-
ture of his or her involvement. Simply providing information, such as re-
quirements, does not make a user part of the design agent, nor does testing and
giving feedback. To share in design agency, the user must make at least one
structural decision regarding the design object. As a complete discussion of
this issue would require incorporating the vast literature on authority and or-
ganizational power [46], [47]; here, we simply point out that official authority
to make a structural decision does not necessarily coincide with the practical
reality of who makes a decision. The key to identifying the design agent is in
separating those individuals (or groups) who provide information about con-
straints, primitives and the other design elements, and those who decide on
structural properties.

Another theme currently gaining significant attention is software architec-
ture [44]. Software architecture is the level of design concerned with “specify-
ing the overall system structure,” [48, p. 1]. This presents a possible difficulty:
if a specification is a description of the components of a design object and
their relationships, which components and relationships are parts of the soft-
ware architecture? How does one distinguish high-level components and rela-
tionships from low-level ones? A design specification for a complex system
might exist simultaneously at many levels of abstraction. Alternatively (and
perhaps more likely) high-level components are defined in terms of lower-
level components and these are defined in terms of even lower-level compo-
nents, etc., until everything is defined in terms of primitive components. In this
multilevel view of design, the software architecture concept is a threshold
above which is architecture, and below which is ‘detailed design.’ Is this
threshold arbitrary? At this time, we can only suggest these fundamental ques-
tions about software architecture as topics for future research.

6.2 Implications for Research

The proposed characterization of design also gives rise to several implica-
tions for design research. To date, much design research has been prescriptive,
addressing practical recommendations and guidance for software develop-
ment; yet, little theoretical, and even less empirical, treatment of software de-
sign exists [49]. This has led to many calls for field research in this area (e.g.
[1], [50], [49]). Defining design as the process by which one specifies an ob-
ject’s structural properties raises several important research topics:
1. How is software designed in practice?
2. To what extent is each element of the proposed definition (requirements,

primitives, etc.) known when design begins?
3. Can a single theory explain all of the diverse behaviors involved in software

design?
4. How do designers discover each kind of information?

Put another way, academic treatment of software design may involve de-
veloping and testing interdependent process and causal theories of design.
Process theories can be used to explain how design occurs.10 Causal theories
deal with effects of some variables on others and can be used to suggest how
to design better.

6.3 Goals vs. Requirements in Information Systems Development

The notion of goal is considered essential in requirements engineering as the
concept that captures the motivation for developing a system (“why”) and the
way to define objectives at various levels of abstraction [18]. Our definition of
design includes both goals and requirements. We now describe briefly how
these two concepts relate within this context.

We start by observing that in the information systems context, a design ob-
ject is an artifact situated11 in an environment termed the application domain
and designed to support activities of the application domain. Typically, the
application domain is an organizational setting such as a business or a part of a
business. The application domain itself operates within an external environ-
ment. For example, a business is embedded within a business environment
comprised of customers, suppliers, competitors, service providers, and regula-
tory bodies. The application domain and the external environment interact: the
environment generates stimuli that invoke actions in the domain. The actions
of the domain can impact its environment. Similarly, the artifact is situated in
the domain. The domain and the artifact interact: the domain creates external
stimuli which invoke actions in the artifact. The actions of the artifact can im-
pact the domain. Once the artifact is embedded a change occurs: the domain
now includes the artifact. Now the modified domain (with the included arti-
fact) interacts with the external environment. This view is depicted in Figure 5.

Domain goals, or simply goals, are the intended impact of the actions in the
domain on the external environment.12 The purpose of the artifact is to enable
the domain to accomplish these goals more effectively and efficiently. The ar-
tifact does this by responding to stimuli from the domain is ways that will sup-
port the domain in accomplishing the goals. Accordingly, requirements can be
defined as the properties that the artifact should possess in order to accom-
plish its purpose. These requirements can be of two types:
1. Structural requirements are intended to assure that the object can match

well with the other components of the domain or its external environment.

10 “A process theory [is] an explanation of how and why an organizational entity

changes and develops,” [51, p. 512].
11 The word situated should not be taken literally in the physical sense, but in the sense

that the artifact acts interacts with other components in a domain.
12 For example, while it may appear that ‘profitability’ is related to the business rather

than to its environment, profitability is the outcome of exchanges between a business
and its environment, and the business should act such that these exchanges create the
desired outcome.

Fig. 5. Separate Domains of Goals and Requirements

2. Behavioral requirements define the desired responses of the artifact to
stimuli from the domain (or from the environment) generated when the do-
main is working to accomplish its goals. These responses, in turn, affect the
domain (and, directly, or indirectly, the environment).
The requirements definition process can be viewed as identifying the prop-

erties (structural and behavioral) that the artifact should possess to support the
domain in accomplishing the goals. Design can be viewed as the way to as-
semble available types of components in order to accomplish an artifact that
meets the requirements.

7 Conclusion

The work we describe here is motivated by the observation that a clear, precise
and generally accepted definition of the concept of design can provide benefits
for research, practice and education. Our literature study indicated that such a
definition was not available. Therefore, we synthesized a new definition,
which views the design activity as a process, executed by an agent, for the
purpose of generating a specification of an object based on: the environment in
which the object will exist, the goals ascribed to the object, the desired struc-
tural and behavioral properties of the object (requirements), a given set of
component types (primitives), and constraints that limit the acceptable solu-
tions. As one possible application of our definition we demonstrate how it can
be used to index design knowledge to support its reuse.

As a second step, we situate the design concept in a network of related con-
cepts appropriate to the information systems and software development do-
main by proposing a conceptual model of design projects. The intent of this
conceptual model is to facilitate study of design projects by identifying and
clarifying the main relevant concepts and relationships. We demonstrate the
usefulness of this conceptual model by using it to compare several approaches
to system and software design.

Finally, we link our proposed definition of design to current themes in de-
sign research, in particular, the notion of requirements as used in system de-
velopment.

One purpose of this work is to facilitate theoretical and empirical research
on design phenomena. We hope this paper will contribute to clarifying under-
standing and usage of design and related concepts and encourage scientific re-
search on design. Another purpose is to create a set of concepts that can guide
practice and education in the information systems and software design domain.

This article includes examples of design from diverse areas including pre-
historic hunters, artists, and architects. The reader may question whether such
a broad perspective on design is useful for studying software development.
Yet, it remains unknown whether software designers are more like engineers
or artists, or are not much like either. This can only be answered by observing
the behaviors of a wide range of those who are engaged in software design:
elite and amateur, engineers and hackers, formally trained and self-taught.
Having a well defined set of concepts to describe and reason about phenomena
related to design and design projects can provide guidance for this empirical
work.

Acknowledgement. This work was done with partial support from the Natural
Sciences and Engineering Research Council of Canada.

References

1. Freeman, P., and Hart, D.: A Science of Design for Software-Intensive Systems.
Communications of the ACM 47, 8, 19–21 (2004)

2. Simon, H. A.: The Sciences of the Artificial, 3rd ed. MIT Press, Cambridge (1996)
3. Hevner, A. R., March, S. T., Park, J., and Ram, S.: Design Science in Information

Systems Research. MIS Quarterly 28, 1, 75–105 (March 2004)
4. March, S. T., and Smith, G. F.: Design and Natural Science Research on Informa-

tion Technology. Decision Support Systems 15, 4, 251–266 (1995)
5. Accreditation Board for Engineering and Technology, Inc.: Annual Report for the

Year Ending September 30, 1988. New York, 1988
6. van Engers, T. M., Gerrits, R., Boekenoogen, M., Glassée, E., and Kordelaar, P.:

Power: Using UML/OCL for Modeling Legislation - An Application Report. In:
Proceedings of the 8th International Conference on Artificial Intelligence and Law,
pp. 157–167. ACM Press (2001)

7. Bradel, B., and Stewart, K.: Exploring Processor Design using Genetic Program-
ming. In: ECE1718 Special Topics in Computer Hardware Design: Modern and
Emerging Architectures. University of Toronto, Ontario, Canada (April 2004)

8. Eekels, J.: On the Fundamentals of Engineering Design Science: The Geography of
Engineering Design Science. Part 1. Journal of Engineering Design 11, 377--397
(2000)

9. Breuer, T., Ndoundou-Hockemba, M., and Fishlock, V.: First Observation of Tool
Use in Wild Gorillas. PLoS Biol 3, 11 (2005)

10. Mulcahy, N., and Call, J.: Apes Save Tools for Future Use. Science 312, 5776,
1038–1040 (2006)

11. Churchman, C. W.: The Design of Inquiring Systems: Basic Concepts of Systems
and Organization. Basic Books, New York (1971)

12. Alexander, C. W.: Notes on the Synthesis of Form. Harvard University Press
(1964)

13. Gero, J. S.: Design Prototypes: A Knowledge Representation Schema for Design.
AI Magazine 11, 4, 26–36 (1990)

14. Bourque, P., and Dupuis, R., Eds.: Guide to the Software Engineering Body of
Knowledge (SWEBOK). IEEE Computer Society Press (2004)

15. Siddiqi, J., and Shekaran, M.: Requirements Engineering: The Emerging Wisdom.
IEEE Software 15–19 (1996)

16. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd ed. Addison-
Wesley Professional (2003)

17. Pahl, G., and Beitz, W.: Engineering Design: A Systematic Approach. Springer-
Verlag, London (1996)

18. Lamsweerde, A.V.: Goal-oriented Requirements Engineering: A Guided Tour. In:
Fifth IEEE International Symposium on Requirements Engineering, pp. 249--262
(2001)

19. Hammer, M., and Champy, J.: Reengineering the Corporation: A Manifesto for
Business Revolution. Business Horizons 36, 5, 90–91 (1993)

20. van der Alast, W. M. P.: Workflow Verification: Finding Control-flow Errors Using
Petri-net-based Techniques. In: Business Process Management: Models, Tech-
niques, and Empirical Studies (LNCS 1806), W. van der Aalst, J. Desel, and
A. Oberweis, Eds., Springer-Verlag, pp. 161–183 (2000)

21. Soffer, P., and Wand, Y.: Goal-driven Analysis of Process Model Validity. Ad-
vanced Information Systems Engineering, 521—535 (2004)

22. Royce, W. Managing the Development of Large Software Systems: Concepts and
Techniques. In: Proceedings of Wescon (Aug 1970).

23. Alter, S.: The Work System Method: Connecting People, Processes, and IT for
Business Results. Work System Press (2006)

24. Freeman, R.: Strategic Management: A Stakeholder Approach. Pitman, Boston
(1984)

25. Bera, P. and Wand, Y.: Conceptual Models for Knowledge Management Systems.
Working Paper, University of British Columbia (2007)

26. Checkland, P.: Systems Thinking, Systems Practice. John Wiley & Sons, Chiches-
ter (1999)

27. Jacobson, I., Booch, G., and Rumbaugh, J.: The Unified Software Development
Process. Addison-Wesley Longman Publishing Co., Boston (1999)

28. Department of Justice.: The Department of Justice Systems Development Life Cy-
cle Guidance Document

29. Manlei, M., and Teorey, T.: Incorporating Behavioral Techniques into the Systems
Development Lifecycle. MIS Quarterly 13, 3, 257–274 (1989)

30. Fenton, N.: Software Measurement: A Necessary Scientific Basis. IEEE Trans.
Softw. Eng. 20, 3, 199--206 (1994)

31. Finkelstein, L.: A Review of the Fundamental Concepts of Measurement. Meas-
urement 2, I, 25--34 (1984)

32. Roberts, F.: Measurement Theory with Applications to Decision Making, Utility,
and the Social Sciences. Addison Wesley, Reading (1979)

33. Polya, G.: How to Solve It: A New Aspect of Mathematical Method, 2nd ed.
Princeton University Press, Princeton (1957)

34. Kessler, A.: Wsj: Weekend Interview with Facebook’s Mark Zuckerberg,
http://www.andykessler.com/andy_kessler/2007/03/wsj_weekend_int.html

35. Beck, K.: Extreme Programming Explained : Embrace Change. Addison-Wesley,
Reading, MA (2000)

36. Grüninger, M., and Fox, M.: Methodolgy for the Design and Evaluation of Ontolo-
gies. In: Proceedings of the IJCAI Workshop on Basic Ontological Issues in
Knowledge Sharing. AAAI Press, Menlo Park, CA (1995)

37. Noy, N., and Hafner, C.: The State of the Art in Ontology Design. AI Magazine,
53--74 (1997)

38. Mili, H., F., M., and A., M.: Reusing Software: Issues and Research Directions.
IEEE Transactions on Software Engineering 21, 6, 528—562 (1995)

39. Ambler, S.: A Realistic Look at Object-oriented Reuse. Software Development 6, 1,
30—38 (1998)

40. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., and
S., A.: A Pattern Language: Towns, Buildings, Construction. Oxford University
Press (1977)

41. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Boston (1995)

42. Desouza, K. C., Awazu, Y., and Tiwana, A.: Four Dynamics for Bringing Use Back
into Software Reuse. Commun. ACM 49, 1, 96—100 (2006)

43. Reubenstein, H. and Waters, R.: The Requirements Apprentice: Automated Assis-
tance for Requirements Acquisition. IEEE Trans. Softw. Eng., 17, 3, 226--240
(1991)

44. Hansen, S., Berente, N. and Lyytinen, K.: Requirements in the 21st Century: Cur-
rent Practice and Emerging Trends. The Design Requirements Workshop, Cleve-
land (2007)

45. Gregor, S. and Jones, D.: The Anatomy of a Design Theory. Journal of the Associa-
tion for Information Systems, 8, 312 (2007)

46. Aghion, P. and Tirole, J.: Formal and Real Authority in Organizations. Journal of
Political Economy, 105, 1 (1997)

47. Pfeffer, J.: Managing with Power. Politics and Influence in Organizations. Harvard
Business School Press, Boston, MA, USA (1992)

48. Garlan, D. and Shaw, M.: An Introduction to Software Architecture. In: Advances
in Software Engineering and Knowledge Engineering. V. Ambriola and G. Tortora,
eds., World Scientific, pp. 1–39 (1993)

49. Wynekoop, J. and Russo, N.: Studying System Development Methodologies: An
Examination of Research Methods. Information Systems Journal 7, 47-65 (January
1997)

50. Sullivan, K.: Preliminary report: NSF Workshop on the Science of Design: Soft-
ware and Software-Intensive Systems. Technical Report, University of Virginia
Department of Computer Science, Airlie Center (November 2003).

51. Van de Ven, A. and Poole, M.: Explaining Development and Change in Organiza-
tions. The Academy of Management Review 20, 510--540 (July 1995)

52. Casti, J.: Paradigms Lost. Avion Books, New York (1989)
53. Hinrichs, T. R.: Problem-solving in Open Worlds: A Case Study in Design. PhD

thesis, Atlanta (1992)
54. Archer, B.: Design as a Discipline. Design Studies 1, 1, 17--20 (1979)
55. Blumrich, J. F.: Design. Science 168, 3939, 1151 (1970)
56. Buchanan, R.: Personal Communication (2006)
57. Complin, C.: The Evolutionary Engine and the Mind Machine: A Design-based

Study of Adaptive Change. PhD thesis, School of Computer Science, The Univer-
sity of Birmingham (1997)

58. Eckroth, J., Aytche, R., and Amoussou, G.-A.: Toward a Science of Design for
Software-intensive Systems. In: Proceedings of the Second International Confer-

ence on Design Science Research in Information Systems and Technology,
S. Chatterjee and M. Rossi, Eds, Pasadena`(2007)

59. FitzGerald, J., and FitzGerald, A.: Fundamentals of Systems Analysis, 3rd ed.
Wiley (1987)

60. Trunick, P.: ERP: Promise or Pipe Dream? Transportation Distribution 40, 1 (1999)
61. Harris, D.: Systems Analysis and Design: A Project Approach. Dryden Press, TX

(1995)
62. Hirschheim, R., Klein, H. K., and Lyytinen, K.: Information Systems Development

and Data Modeling: Conceptual and Philosophical Foundations. Cambridge Uni-
versity Press, New York (1995)

63. Jobs, S.: Apple’s One-Dollar-a-Year Man. Fortune (2000)
64. Love, T.: Constructing a Coherent Cross-disciplinary Body of Theory about De-

signing and Designs: Some Philosophical Issues. Design Studies 23, 3, 345–361
(2002)

65. Martin, J.: Rapid Application Development. Macmillan Publishing Co., Inc., Indi-
anapolis, IN, USA (1991)

66. Merriam-Webster, http://www.m-wr.com/dictionary/design
67. Miller, W.: The Definition of Design. Method Journal (2005)
68. Nunamaker, J. F., Chen, M., and Purdin, T. D. M.: Systems Development in Infor-

mation Systems Research. Journal of Management Information Systems 7, 3, 89—
106 (1991)

69. Papanek, V.: Design for Human Scale. Van Nostrand Reinhold Company, New
York (1983)

70. The Partners of Pentagram.: Living by Design. Lund Humphries, London (1978)
71. Pye, D.: The Nature of Design. Studio Vista, London (1964)
72. Richardson, J.: Basic Design. Prentice-Hall, New Jersey (1984)
73. Schurch, T. W.: Reconsidering Urban Design: Thoughts About Its Definition and

Status as a Field or Profession. Journal of Urban Design 4, 1, 5--28 (1999)
74. Barnett, J.: An Introduction to Urban Design. Harper and Row Publishers Inc., New

York (1982)
75. Stumpf, R., and Teague, L.: Object-oriented Systems Analysis and Design with

UML. Pearson Prentice Hall, New Jersey (2005)
76. Urban Design Group.: Urban Design as a Career,

http://www.udg.org.uk/?document_id=468 2003
77. Walls, J. G., Widmeyer, G. R., and El Sawy, O. A.: Building an Information Sys-

tem Design Theory for Vigilant EIS. Information Systems Research 3, 1, 36--59
(1992)

Appendix: Analysis of Existing Definitions of Design

We have identified at least 33 definitions of design and sub-types of design
(such as “software design” and “urban design”) in the literature. Though de-
sign has several meanings, we have focused on the meaning involving plans
for an object and planning or devising as a process.

We employed judgment sampling and snowball sampling, i.e., we made
educated guesses as to where to look, and then investigated promising refer-
ences. This strategy was consistent with our goal of identifying as many rele-
vant definitions as possible.

To evaluate the definitions we applied a set of four main criteria: coverage, meaningfulness, unambiguousness and ease of use (see Ta-
ble 8). The first three are derived from the evaluation criteria for good theories mentioned, for example, by Casti [52, p. 44-45]. The
fourth is a pragmatic criterion. We do not claim that these are the best criteria, but, in the absence of a guiding theory for evaluating
definitions, that they are reasonable and have face validity.

Table 8. General Definition Evaluation Criteria

Criterion Definition Example of Error

Coverage

Proper coverage means including all appropriate phenomena (com-
pleteness), and only appropriate phenomena. If a definition has im-
proper coverage, it excludes at least one phenomenon that it should
include or includes at least one phenomenon it should not.

Defining “human communication” to include only
speech, will not address non-verbal communica-
tion (e.g. body language).

Meaningfulness

Each term comprising a definition must have a commonly accepted
meaning in the given context or must have been pre-defined. Each
combination of terms must be directly understandable from the
meaning of terms, or have been predefined.

Defining a zombie as ‘the living dead’ is inappro-
priate because, even though ‘living’ and ‘dead’
have commonly accepted meanings, their juxta-
position forms an oxymoron.N

ec
es

sa
ry

Unambiguousness
Each term comprising a definition must have exactly one meaning in
the given context; furthermore, the definition as a whole must have
only one valid interpretation.

Defining political oratory as ‘oral rhetoric related
to politics’ is inappropriate because ‘rhetoric’ is a
contronym, i.e., has two contradictory meanings.

O
pt

io
na

l

Ease of Use

Ideally, a definition should be easy to understand and remember, ap-
plicable in disparate situations, and readily differentiate between in-
cluded and excluded phenomena. Simplicity, parsimony and con-
creteness are all aspects of Ease of Use. These aspects are at least in
part subjective and depend on who uses the definition.

Defining the Natural Numbers as ‘the smallest set
satisfying the two properties:
A) 1 is in N; and B) if n is in N, then n + 1 is in
N” while clearly correct, would score poorly on
Ease of Use in a low-level mathematics class.

To give the reader a sense of the thought process behind the analysis, we discuss two representative examples of the definitions en-
countered. The first example is by Engers et al. who define design as “the creative process of coming up with a well-structured model
that optimizes technological constraints [6], given a specification.” This definition has both meaningfulness and coverage problems.

First, the meaning of ‘optimizes technological constraints’ is unclear. In optimization techniques, one optimizes the characteristics of
an object subject to constraints, not the constraints themselves. Second, the use of “well-structured” paints an idealistic portrait of de-
sign. This confounds the notion of design with measures for design quality. For example, an inexperienced computer science student
can design a personal organizer application. The application might not be “well-structured”, but is nonetheless designed. Thus, this
definition omits activities that are clearly design. The second example is that of Hinrichs who defines design as “the task of generating
descriptions of artifacts or processes in some domain,” [53, p. 3]. This also has coverage problems. “My chair is grey” is a description
of an artifact in a domain, but is clearly not a design. The problem here is that the definition relates to previously designed artifacts.
Thus, this definition includes phenomena that are not design.

The complete analysis of existing definitions is presented in Table 9. Of the 33 definitions identified, we have found that all seem to
have coverage problems, at least 12 have meaningfulness problems and at least three have some form of ambiguity.

Table 9. Analysis of Existing Definitions

Source Definition Criticism
Accreditation Board
for Engineering and
Technology [5]

“Engineering design is the process of devising a sys-
tem, component, or process to meet desired needs. It is
a decision making process (often iterative), in which
the basic sciences, mathematics, and engineering sci-
ences are applied to convert resources optimally to
meet a stated objective.”

Coverage – the definition is idealistic and unnecessarily limiting in
its use of “optimally.” E.g., the building in which I work is far from
optimal, but it was still designed.
Meaningfulness – it is not clear what “desired needs” are.

Alexander [12] “The process of inventing physical things which dis-
play new physical order, organization, form, in re-
sponse to function.”

Coverage – this definition excludes the design of intangible things,
such as processes.
Unambiguousness – it is not clear whether thing must display new
physical order, organization AND form, or new physical order, or-
ganization OR form.

Archer [54] “Design is, in its most general educational sense, de-
fined as the area of human experience, skill and un-
derstanding that reflects man’s concern with the ap-
preciation and adaptation in his surroundings in the

Coverage – design is an activity, not an “area of human experi-
ence…” One can design with little or no experience, skill and un-
derstanding. E.g., the application programmer who designs a
graphical user interface without experience in, skill in or under-

Source Definition Criticism
light of his material and spiritual needs.” standing of the principles of interface design.

Beck [35] “Designing is creating a structure that organizes the
logic in the system”

Coverage – excludes forms of design that organize things other than
logic, e.g., urban planning organizes space.

Blumrich [55] “Design establishes and defines solutions to and perti-
nent structures for problems not solved before, or new
solutions to problems which have previously been
solved in a different way.”

Coverage – Unnecessarily limits design to solutions not previously
solved. Excludes independent invention and finding new ways to
solve old problems. E.g., by this definition, new cars are not de-
signed because we already have cars.

Bourque & Dupuis
[14]

“Design is defined in [IEEE610.12-90] as both “the
process of defining the architecture, components, in-
terfaces, and other characteristics of a system or com-
ponent” and “the result of [that] process.” Viewed as a
process, software design is the software engineering
life cycle activity in which software requirements are
analyzed in order to produce a description of the soft-
ware’s internal structure that will serve as the basis for
its construction.”

Coverage – even within the software domain, this definition is far
too restrictive. If someone simply writes software without creating
an intermediate description of its structure, this is still design. De-
sign is, furthermore, not limited to the phase of the software engi-
neering life cycle between requirements analysis and construction; it
is in no way clear that these phases can be practically distinguished
in all situations.

Buchanan [56] “Design is the human power to conceive, plan and re-
alize all of the products that serve human beings in the
accomplishment of their individual or collective pur-
poses.”

Coverage – Design is not an ability (“power”) but an activity. E.g.,
drawing blueprints for a house, by this definition, is not design.
Unambiguousness – it is not clear what “products” are – does this
include processes and strategies as well as consumer goods?

Complin [57] “‘design’ is used to refer to the abstract description of
the functional architecture of both real or possible sys-
tems.”

Coverage – Excludes design of simple things, such as boomerangs.
Meaningfulness – it is not clear what “functional architecture” en-
tails

Engers et al. [6] “the creative process of coming up with a well–
structured model that optimizes technological con-
straints, given a specification.”

Coverage – excludes all suboptimal artifacts.
Meaningfulness – the meanings of “specification” and model are
unclear.

Eckroth et al. [58] “Design (as a verb) is a human activity resulting in a
unique design (specification, description) of artifacts.
Therefore, what can be designed varies greatly. How-

Coverage – excludes independently invention of previously created
artifacts and design starting from a hypothetical situations

Source Definition Criticism
ever, common to all design is intention: all designs
have a goal, and the goal is typically meeting needs,
improving situations, or creating something new.
Thus, design is the process of changing an existing
environment into a desired environment by way of
specifying the properties of artifacts that will consti-
tute the desired environment; in other words, creating,
modifying, or specifying how to create or alter arti-
facts to meet needs. In addition, it is best communi-
cated in terms of a particular context, as previous
knowledge, experience, and expectations play a strong
role in designing and understanding designs.”

FitzGerald and Fitz-
Gerald [59]

“design means to map out, to plan, or to arrange the
parts into a whole which satisfies the objectives in-
volved.”

Coverage – this excludes artifacts that satisfy only some of their ob-
jectives. E.g., Enterprise-Resource Planning software does not al-
ways satisfy its stated objectives [60], but surely it as still designed.

Freeman and Hart
[1]

“design encompasses all the activities involved in
conceptualizing, framing, implementing, commission-
ing, and ultimately modifying complex systems—not
just the activity following requirements specification
and before programming, as it might be translated
from a stylized software engineering process.”

Coverage – simple systems and non-systems can also be designed,
e.g. an oar, a boomerang.
Meaningfulness – the activities are not defined or clearly explained;
furthermore, enumerating the tasks encompassed by design does not
necessarily capture the meaning of design.

Gero [13] “a goal-oriented, constrained, decision-making, explo-
ration and learning activity which operates within a
context which depends on the designer's perception of
the context.”

Coverage – The problem here is subtle. Not all design is a decision
making activity; some designers, such as sculptors, may proceed
fluidly without discrete decisions. It could be argued that their deci-
sions are implicit, but then this definition would include activities
such as public speaking. Decision-making is a perspective on de-
sign, not inherent to it. Furthermore, the idea of designing as leading
to a new or changed artifact is missing.

Harris [61] “A collection of activities designed to help the analyst Coverage – excludes design for non problems outside information

Source Definition Criticism
prepare alternative solutions to information systems
problems.”

system.
Meaningfulness – use of “designed” is circular

Hevner et al. [3] “design is the purposeful organization of resources to
accomplish a goal.”

Coverage – includes organization tasks that do not constitute de-
sign, e.g., alphabetizing books.
Meaningfulness – resources is undefined; e.g., what are the re-
sources organized to create a military strategy? What are the re-
sources that are being organized in graphics design?
Unambiguousness – usage of “organization;” is it physical organiza-
tion of resources, or mental?

Hinrichs [53] “the task of generating descriptions of artifacts or
processes in some domain”

Coverage – includes descriptions that are not, e.g., “the chair is
brown.”

Hirschheim [62] “systems analysis is the process of collecting, organiz-
ing, and analyzing facts about a particular [informa-
tion system] and the environment in which it operates.
Systems design then is the conception, generation and
formation of a new system, using the analysis results.”

Coverage – excludes design of non-systems and designs that end in
a complete specification (e.g., of a bridge) rather than a system.
Meaningfulness – this definition hinges on undefined terms “con-
ception, generation and formation”

Jobs [63] “Design is the fundamental soul of a man-made crea-
tion that ends up expressing itself in successive outer
layers of the product or service.”

Coverage – excludes designs not involving a product or service and
designs that are not “man-made”
Meaningfulness – the meaning of “fundamental soul” is unclear

Love [64] “‘Design’— a noun referring to a specification or plan
for making a particular artefact or for undertaking a
particular activity. A distinction is drawn here be-
tween a design and an artifact — a design is the basis
for, and precursor to, the making of an artefact.”
“‘Designing’—human activity leading to the produc-
tion of a design.”

Coverage – 1) the strict time sequencing implied by this definition
is unnecessarily limiting; e.g., in software engineering simultaneous
design and creation is arguably the preferred approach [65] [35], 2)
Design is not strictly a human activity
Meaningfulness - “Artefact” is undefined, so the scope is unknown.

Merriam-Webster
[66] [verb]

(verb) “transitive senses 1 : to create, fashion, execute,
or construct according to plan : DEVISE, CONTRIVE
2 a : to conceive and plan out in the mind <he de-

Coverage – t would include drawing a diagram of a tree (not de-
sign), but not collaboratively writing a new search algorithm (de-
sign).

Source Definition Criticism
signed the perfect crime> 4 a : to make a drawing, pat-
tern, or sketch of b : to draw the plans for”

Meaningfulness – circular reference to ‘design’

Merriam-Webster
[66]
[noun]

“1 a : a particular purpose held in view by an individ-
ual or group <he has ambitious designs for his son> b
: deliberate purposive planning <more by accident
than design> 2 : a mental project or scheme in which
means to an end are laid down 4 : a preliminary sketch
or outline showing the main features of something to
be executed : DELINEATION 5 a : an underlying
scheme that governs functioning, developing, or un-
folding : PATTERN, MOTIF <the general design of
the epic> b : a plan or protocol for carrying out or ac-
complishing something (as a scientific experiment);
also : the process of preparing this 6 : the arrangement
of elements or details in a product or work of art 7 : a
decorative pattern 8 : the creative art of executing aes-
thetic or functional designs”

Coverage - Overall, this definition does not provide a unifying no-
tion of the minimum requirements to call something a design, and
does not separate designing from planning.
Meaningfulness – circular reference to ‘designs’

Miller’s [67] “Design is the thought process comprising the creation
of an entity,”

Coverage – design can encompass more than just a thought process;
e.g., drawing diagrams. Thought processes cannot create physical
things.

Nunamaker et al.
[68]

“Design ... involves the understanding of the studied
domain, the application of relevant scientific and
technical knowledge, the creation of various alterna-
tives, and the synthesis and evaluation of proposed al-
ternative solutions.”

Coverage – if a person has a breakthrough idea and implements a
single, innovative artifact, without considering any alternatives, this
would still be design. Depending on how one defines “scientific
knowledge,” many designers throughout history would be excluded
by this definition.

Papenek [69] “Design is a conscious and intuitive effort to impose
meaningful order.... Design is both the underlying ma-
trix of order and the tool that creates it.”

Coverage – Would include all ordering activities, such as alphabet-
izing books
Meaningfulness – ‘underlying matrix of order’ is undefined.
Ease of use – unclear how to operationalize “matrix of order”

Source Definition Criticism
Partners of Penta-
gram [70]

“A design is a plan to make something: something we
can see or hold or walk into; something that is two-
dimensional or three-dimensional, and sometimes in
the time dimension. It is always something seen and
sometimes something touched, and now and then by
association, something heard.”

Coverage – This definition excludes design of an incorporeal thing,
e.g., a philosophy, society or strategy.

Pye [71] “Invention is the process of discovering a principle.
Design is the process of applying that principle. The
inventor discovers a class of system – a generalization
– and the designer prescribes a particular embodiment
of it to suit the particular result, objects and source of
energy he is concerned with.”

Coverage – Designing need not comply with principles; e.g., one
might design a software interface with absolutely no knowledge of
any principles regarding interface design. The interface is no less
designed by someone.

Richardson [72] “Design is a general term, comprising all aspects of
organization in the visual arts.”

Coverage – excludes design in architecture, engineering, etc.

Schurch [73] “Therefore, urban design might be more clearly de-
fined as “giving physical design direction to urban
growth, conservation, and change...” as practised by
the allied environmental design professions of archi-
tecture [74, p. 12], landscape architecture and urban
planning and others, for that matter, such as engineers,
developers, artists, grass roots groups, etc.”

Coverage – Though design intuitively may give direction, not all in-
stances of giving direction are design; e.g., the mere command “give
the castle a moat” gives direction, but is clearly not design
Meaningfulness – ‘physical design direction’ undefined

Simon [2] “Design is devising courses of action aimed at chang-
ing existing situations into preferred ones.”

Coverage – excludes designs beginning from hypothetical situa-
tions, e.g., when a national defense agency designs a contingency
plan for a nuclear attack, and designing imagined system.

Stumpf and Teague
[75]

“Design is a process which creates descriptions of a
newly devised artifact. The product of the design
process is a description which is sufficiently complete
and detailed to assure that the artifact can be built.”

Coverage – includes describing an artifact that already exists, e.g.
‘the cruise ship is big;’ excludes partially designed objects and de-
sign of imaginary objects.

Urban Design “Urban design is the process of shaping the physical Coverage – This definition confuses design as planning a setting

Source Definition Criticism
Group [76] setting for life in cities, towns and villages. It is the art

of making places.”
with the physical process of implementing that plan; e.g., by this
definition, planning the park is not designing, but laying the sods is.

Walls et al. [77] “The design process is analogous to the scientific
method in that a design, like a theory, is a set of hy-
potheses and ultimately can be proven only by con-
struction of the artifact it describes.”

Coverage – While a design may imply a set of hypotheses, saying
the design is the like saying being hungry is making a sandwich.
Ease of Use – representing a design as a set of hypotheses may be
difficult.

